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LIQUID CRYSTALS, 1996, VOL. 20, No. 3, 267-276 

Ferrielectric smectic phases: Liquid crystal structure and 
macroscopic fluctuationst 

by V. L. LORMAN* 
Laboratoire de Physique de la Matihe Condenste, Universite de Picardie, 

33 rue Saint Leu, 80039 Amiens Cedex, France 

(Received 21 July 1995; accepted 26 September 1995) 

The work concerns the structures and properties of multilayer smectic phases with complex 
tilt and dipolar order. The symmetry and thermodynamical classification of multilayer 
antiferroelectric and ferrielectric phases is given. The main attention is paid to the difference 
of these phases with respect to classical ferroelectric S:. A two-layer model of the ferrielectric 
smectic phase is generalized to describe the sequence of the first order phase transitions 
ferro-ferri-antiferro-electric and to show the possibility of existence of two isostructural 
ferrielectric phases, which differ in the value of the helical pitch and in the sense of the helix. 

1. Introduction 
In recent years, many experimental studies have been 

performed on liquid crystal compounds which show new 
types of smectic phases with complex tilt and dipolar 
order, namely antiferroelectric SEA and ferrielectric SE, 
phases and a whole number of other sub-phases [l-81. 
Initially, two-layer tilted phases were discovered in the 
1980s [9-111, but the polymorphism of corresponding 
substances was not realized. 

Although the sets of experiments on the new series of 
liquid crystals embraced X-ray diffraction [ 12,131, 
differential scanning calorimetry (DSC) [ 5,14,15], heli- 
coidal structure studies [ 1,161, phason dispersion ana- 
lysis [17] and conoscopic observations under an 
external electric field [6,7,18,19], the structures of the 
reported phases are not yet clear. The X-ray studies on 
oriented plates show the absence of any detectable 
modulation of electronic density along the z axis, which 
suggests strongly that the tilt angle is identical from one 
layer to another. The layer spacing d(T),  as a function 
of temperature [ 12,13,20,21], varies very slowly when 
crossing between S:, SE, and SEA phases with no qualitat- 
ive difference between the X-ray diffraction images in 
these phases. Thus, only indirect methods of structure 
determination are available for the moment. One has to 
construct a limited number of realistic structural models 
to analyse and then to deduce their physical properties 
and verify experimentally the consequences. 

In a series of studies [22-261, in order to explain the 
set of experimental data concerning phases with complex 

* Author for correspondence. 
t Presented at the European Conference on Liquid Crystals, 

Bovec, Slovenia, March 1995. 

tilt and dipolar order, it is proposed that a bilayer 
periodicity for the smectic stacking is assumed. In our 
previous studies [25,26], we have shown that the 
sequence of transitions involving ferro-, ferri- and anti- 
ferro-electric phases can be understood in terms of an 
azimuthal reorientation of the molecular sub-units in 
adjacent smectic layers. Some recent experimental data, 
especially conoscopic observations using an external 
electric field [lS,  19,271, have generated a number of 
structural models supposing the existence of three-, four- 
and even multilayered phases [see, for example, 4,161 
as the steps of a possible Devil’s staircase. However, 
neither the symmetries of the structures nor symmetry 
restrictions on the parameters of the proposed structures 
have been analysed. In [28], a systematic symmetry and 
thermodynamical analysis of the possible antiferroelec- 
tric and ferrielectric structures induced by multilayer tilt 
ordering from a parent SA phase has been performed, 
which has reduced significantly the choice of structural 
models. This work has revealed considerable difference 
in molecular organization of the multilayer tilted smectic 
phases with respect to the classical monolayer S? phase, 
although it deals only with basic unwound structures of 
the phases. 

In general, we can summarize several new unusual 
features of phases with complex tilt and dipolar ordering 
as follows: 

(1) There can exist several ordered tilted phases with 
the same number of layers in the unit cell (a) five 
antiferroelectric basic structures for each fixed 
value n of the number of layers (n  > 2); (b) seven 
tilted structures for each fixed value of n (n > 2) 
in achiral substances, all of them of the ‘antiferr0’- 
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268 V. L. Lorman 

type, i.e. the sum of the axial vectors characterizing 
tilts in n layers is equal to zero; (c) from (a) and 
(b) it follows that the basic unwound structures 
of the multilayer phases in chiral and achiral 
substances are rather different, which was not the 
case for S, and S z  phases. 

(2) All tilted antifcrroelectric phases with n > 2 have 
an azimuthal angle between adjacent layers 
different from zero: O #  $ ZIT. This means that 
the molecules in corresponding structures are not 
situated in the same plane, as was the case in S, 
and S y  phases (and even in bilayer S& or So 
structures). 

(3) Each basic unwound structure can generate sev- 
eral different inhomogeneous phases (helicoidal, 
modulated, doubly modulated, etc.). Furthermore, 
some of them can be stable only in an external 
electric field. Thus, it is practically impossible 
to obtain unequivocal information about basic 
unwound structures by studying the behaviour of 
the inhomogeneous phases in an external electric 
field. 

(4) There can exist two different stable states with 
qualitatively the same helicoidal structure, but 
with a different elastic energy of the helix. Such 
kinds of structures can be called isostructural 
helicoidal phases. 

( 5 )  The transition between ferro- and antiferro-elec- 
tric phases through an intermediate ferrielectric 
structure can reveal fluctuations or the molecules 
between two equivalent positions on the cone in 
the ferrielectric phase. This mechanism can lead 
on the macroscopic level to the breaking of 
continuity of the ferrielectric helicoidal structure 
with formation of multiple defects. Spontaneous 
switching of these defects should be seen as macro- 
scopic fluctuations in all types of optical experi- 
ments. For each fixed value of temperature, the 
density of these defects has to be fixed and repres- 
ents an intrinsic characteristic of the ferrielectric 
phase. 

In the present work we focus our attention mainly on 
points (la),  ( lc),  (2) and (4) of this list. The remaining 
points are the subject of papers which will be published 
elsewhere. 

The paper is organized as follows: in 3 2, a theoretical 
analysis is presented of the possible molecular organiza- 
tion that may arise in multilayer antiferroelectric and 
ferrielectric smectics. Points (la), ( lc)  and (2) of the 
above list are clarified. Realistic structures which can 
probably take part in the Devil's staircase sequence of 
phases are presented. It is shown that the mechanism of 
formation of the eventual Devil's staircase is the azi- 

muthal reorientation of the molecules in neighbouring 
layers. 

In $ 3 ,  the model of the two-layer ferrielectric phase 
[25,26] is generalized to explain the actual order of the 
phase transitions ferro- ferri- and ferri- antiferroelectric 
and to show the possibility of existence of two isostructu- 
ral ferrielectric phases of the SEy-type (sce also point (2) 
of the preceding list). It is shown that these two ferri- 
electric phases have no qualitative difference, but differ 
by the sense of their helices and by the absolute value 
of their helicoidal pitches. 3 4 contains a brief discussion 
of the results obtained. 

2. Multilayer antiferroelectric and ferrielectric 
structures 

Let us perform the symmetry analysis of possible 
multilayer tilted phases in chiral smectics in two steps. 
A t  thejfivst step, we will study all different basic unwound 
structures of the antiferroelectric type which can be 
obtained from the parent S, phase by way of phase 
transition. To obtain helicoidal or other inhomogeneous 
phases which correspond to the basic structures one has 
to add at the second step the inhomogeneous term Finhorn 
to the Landau-de Gennes free energy of the SA phase: 

f 

Here the sum extends over the thickness of the sample; 
S is its section area and I/' is its volume. Finhorn contains 
invariants which depend on the gradients of the order 
parameter (OP), while Fhom depends usually only on 
invariants which are polynomials in the function of OP. 
Then, classical Euler-Lagrange procedure gives the types 
of inhomogeneous structures and their domains of 
stability (see for example 123,251 for the types and 
stability of the bilayer helicoidal structures). 

The classification of the basic unwound structures of 
the tilted smectic phases is based on the classification 
of the irreducible representations of the space group of 
symmetry of the S, phase. Such a method was first 
proposed by Indenbom et al. [29,30] (see also [31]). 

Let us introduce for the phenomenological description 
of the phases the axial vectors of the tilts defined as 
follows: 

(2)  
where ni, (u = x, y, z )  are the components of the director 
in the ith layer and the space variables (x,y) and z arc, 
respectively, the in-layer coordinates and the direction 
perpendicular to the smectic plane. 

The components of the tilt axial vectors qi span 
different representations of the space group Go of the 
parent S, phase. Go contains the sub-group of discrete 
one-dimensional translations along the z axis T,  and the 

q . = ( - n .  ry n. ii, nixniz) 
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Ferrielectric smectic phases 269 

continuous sub-group of all the in-plane rotations and 
displacements. Note that in the case of achiral molecules, 
the point group of the smectic layer is Dmh, though in 
the chiral case, the inversion of the media is lost and the 
point group of the layer is D,. 

The low-symmetry ordered tilted phases can be 
divided into three wide classes according to  their transla- 
tional periodicity, i.e. to the number of smectic layers in 
the unit cell. Actually, the one-dimensional Brillouin 
zone of the S, phase has only two points with particular 
symmetry: (i) k = 0 (the centre of the zone) and (ii) k = 
(1/2)c* (its border), where c* = 2 ~ / d  and d is the 
interlayer distance, these particular points being con- 
nected by the line of equivalent points of general type 
(see figure 1). If the transition from the SA phase leads 
to the phase in which one-layer periodicity is preserved, 
then the wave vector of the tilt ordering is associated 
with the centre of the zone (see figure l(a)). This is the 
case of a Sc phase in achiral substances and of a 
ferroelectric SE phase in chiral materials. Analogously, 
all the bilayer tilted smectic phases correspond to the 
wave vector k = (1/2)c* (see figure 1 (b)), associated with 
the border of the zone. This class of phases is larger 
than the previous one. It contains, for example, the 
So phase, i.e. a bilayer, herringbone-structured phase 
with achiral molecules. The antiferroelectric S& phase 
and three possible unwound, basic ferrielectric struc- 
tures with bilayer periodicity [25]  also belong to this 
class. 

Let us now consider the case of the wave vector with 
the end lying inside the Brillouin zone, so that k =  
(l/n)c*, where n > 2 (see figure 1 (c)). The symmetry of 
all the wave vectors lying between k = 0 and k = (1/2)c* 
is exactly the same; consequently the length of the wave 
vector of the corresponding tilt ordering can vary con- 
tinuously with temperature. This is the simple reason 
for the possibility of the so-called Devil's staircase, which 

1/2c* - 112c* 112c* 
T P 

a) b) c )  

Different types of wave vector in the Brillouin zone 
of the S, phase. (a) k = 0 associated with the S g  phase; 
(b)ak=( 1/2)c* associated with the S& phase and two- 
layer ferrielectric phases; (c) k = (l/n)c* associated with 
multilayer antiferroelectric phases. 

Figure 1. 

can result in the existence of the succession of phases 
with different translational periodicity (different integ- 
ral number of layers in the unit cell) connected by 
the regions of stability of the incommensurate phases 
[32,33]. The purpose of this section is to give the 
classification of basic homogeneous unwound structures 
induced by the tilt ordering associated with this third 
type of wave vector. We will limit here our considera- 
tion to the case of chiral smectics in order to give a 
realistic description of the Devil's staircase which can 
eventually occur in chiral smectics, having both ferro- 
electric and antiferroelectric phases in their 
polymorphism. 

To illustrate the structure of multilayer tilted smectic 
phases with n layers in the unit cell, let us take the 
example of n = 4. In this case, four successive layers are 
involved in the ordering. The phase transition from the 
SA phase to the four-layer antiferroelectric phase is 
characterized by four axial vectors of tilt of the layers: 
ql,qz,q3,q4 defined as in equation (2). They form four 
symmetric axial vector combinations which can be 
considered as different axial vector order parameters 
(OP): 

All the vectors in equation (3) are planar and have zero 
z-component. Only two of them, qAl and qa, are associ- 
ated with the wave vector k = (1/4)c* and can induce 
four-layer ordering. They transform in the same way as 
two different vectors of antipolarization Al = 
P, + P2 - P3 -P4and A, =PI -P2 -P3 + P4 ofthefour- 
layer antiferroelectric structure and represent its essential 
characteristics. Here Pi is the polarization of the ith 
layer. Two remaining symmetric combinations in (3) 
cannot induce four-layer ordering, because they are 
associated with the wave vector that is different from 
k = (1/4)c*. The first axial vector qp transforms in the 
same way as the macroscopic polarization P = 
PI + P2 + P3 + P4 and is associated with k = 0. Such OP 
can lead only to a S z  phase in a chiral smectogen. The 
last axial vector )IA3 is associated with k = (1/2)c*. It 
transforms as the bilayer polarization A = P, - P2 and 
can lead to a SEA phase. Thus, qp and Q~~ are secondary 
OP of the four-layer ordering. 

If we are interested only in four-layer ordering, we 
can put qp and q A 3  equal to zero. Then, it follows that 
in all antiferroelectric four-layer phases ql = -q3 and 
q2 = -q4; the tilt of the first layer is always opposite to 
the tilt of the third, and the tilt of the second layer is 
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2 70 V. L. Lorman 

always opposite to the tilt of the fourth. From the point 
of view of the spatial symmetry of the structure, this 
means that there exists a common symmetry element, 
which is preserved in all four-layer antiferroelectric 
structures. This element is the two-fold screw axis along 
the z-direction. 

In order to describe all possible basic unwound struc- 
tures of the four-layer tilt ordering, one has to look for 
the minima of the homogeneous part of the Landau- 
de Gennes free energy as a function of the components 
of the qAr and qA2 axial vectors. 

Note, that in chiral media, the symmetry of the S, 
parent phase has no spatial inversion; the point group 
which preserves the wave vector k = (l/n)c* (n > 2) is 
C,. Consequently, qA1 and qA2 span two irreducible 
representations of the S z  space group. That is, the 
s-component of qAl and the y-component of qA2 form 
one OP and the x-component of qAz and the y- 
component of qA1 form another OP. These two OP are 
always coupled, so that in the free energy there appears 
an invariant ID = [qAI x qA2], the vector product of the 
planar vectors qAl and qA2. This invariant is similar to 
those introduced by Dzyaloshinskii to explain the phe- 
nomenon of the weak ferromagnetism of antiferromag- 
netics [34]. In the theory of exchange magnetics, this 
invariant also appears in the case where the components 
of two magnetization vectors are mixed and distributed 
between two different representations of the paramag- 
netic phase. The value of I ,  defines the angle between 
different sub-lattices; in our case it is the azimuthal angle 
between the tilt vectors of even and odd layers. 

The homogeneous part of the Landau-de Gennes free 
energy of the 4-layer antiferroelectric ordering depends 
on three basic invariants: 

F&m = F ( l l ?  I22 I,) (4) 

where 11 = ( 4 ~ 1 ) ~  + (vA~)’ ,  I’ = (vAI)~(vA~)~ and I, = 
[qA, x qA2] = qA,  qA2 sin c(. Possible low-symmetry 
phases are defined by minima of f’Zom: 

( d F h o m / d ~ , )  = (dFtmm/dIrn)(dIm/dV,) =z 0 ( 5 )  

where { q c }  = {&, &, qz2, yyA2 ), m = 1,2,3. As it is easy 
to show [35,36], the lowest symmetry phase corre- 
sponds to the maximal rank of the matrix (dIrn/dV,) and 
consequently to (dFhom/dIrn) = 0. Other ordered phases 
correspond to the different degenerations of the matrix: 
(dl,,/dy,) = 0. In the parent SA phase all the components 
of the O P  are equal to zero together with the rank of 
(dI,/dq,). Using this method, we obtain five diferent 
four-layer antijierroelectric phuses, characterized by the 
following relations between the qAl and q A 2  vectors (and 
consequently between the axial vectors q ] ,  q2, q3, q4 of 

Corresponding structures are shown in figure 2. The 
axial vectors of the tilts in the four layers are presented 
and their projections on the (x, )?)-plane. 

It is evident that the absence of mirror planes in the 
chiral S z  phase and the existence in the free energy of 
the Dzyaloshinskii invariant 1, = ElfAl x VAZ]  do not 
permit the existence offour-layer phases with the molecules 
lying in the same plane. Between the four-layer antiferro- 
electric smectic phases listed in (6), the structures noted 
as I and I have the same symmetry, but in the phase I, 
four vectors of the tilts form a right spiral, whereas in 
phase I they form a left spiral. The free energies of these 
phases are quite different, because of the different signs 
of the Dzyaloshinskii invariant I,, which correspond to 
the left and to the right handed four-layer spirals. 
Usually phases of this type are called anti-isostructural 
[ 3437,381. 

From the thermodynamical point of  view 1391, the 
phases I and I are the most probable to be found 
experimentally from amongst the five listed four-layer 
phases, because there is only one component of the OP 
varying with temperature in these phases. They can be 
described by the simplest Landau-de Gennes free energy 
expansion of the fourth degree. Eventual observation of 
the phases 11-IV needs a high non-linearity of the system, 
which is expressed theoretically by higher order terms 
in the free energy. Note, that free energy expansion up 
to the eighth degree gives, in the case of four-layer 
ordering, regions of stability of all the listed phases. 
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I' 

W Q  

Y 

, Y  

Figure 2. Structures of the different four-layer antiferroelec- 
tric phases. The vectors of the tilts in four successive layers 
are presented and their projection onto the smectic plane. 
The description of the phases is given by equation ( 6 ) .  
(n) phase i; (6) phase I'; (c) phase 11; ( d )  phase 111; 
(e) phase IV. 

One can generalize the description given for n = 4 to 
the case of any even value of n. Actually, for any even 
n, the phase transition will be described by two vectors 

qAl and qAZ. But for n layers, the axial vectors qAl and 
qAz are the symmetric combinations of the tilts of n 
layers and not four layers. However, for any n there will 
always be five antiferroelectric phases, described by the 
same relations between qAl and qAZ as in equations (6) 
(the relation between qi and qi+l being, of course, 
different and dependent on the value of n). In the case 
of odd values of n, the situation is almost the same. The 
main difference with respect to the case of even n consists 
in the appearance of the non-zero value of qp induced 
as a secondary OP by the antiferroelectric OP. This is 
due to the non-trivial coupling which always exists 
between qp and qAl and qAz in the case of odd n. Only 
the phases I and I' are truly antiferroelectric in this case. 
The phases 11, 111 and IV are ferrielectric phases with 
improper polarization P induced by the coupling with 
the antiferroelectric OP. 

Let us finally analyse what kind of structures can 
form Devil's staircases in multilayer tilted chiral smectics. 
As mentioned above, for any value of n, there are the 
most probable phases I and I' with one component of 
OP varying with temperature. They are represented by 
n-layer right- or left-handed spirals. Such a kind of 
structure exists also for irrational values of n, for which 
it represents an incommensurate structure of the spiral 
type. Using thermodynamic arguments again, one can 
also suppose that only one of two possible anti-isostruc- 
tural spirals I and I is realized for each given value of 
n, because the fixed sign of the Dzyaloshinskii interaction 
I3 = [qA, x VAZ] favours a fixed sense of the spiral. 

Thus, in multilayer chiral tilted smectics, the Devil's 
staircase can be understood as a progressive azimuthal 
reorientation of the molecules in successive layers. An 
antiferroelectric SF, phase with two layers in the unit 
cell (n  = 2) can be taken as the first end point of the 
staircase (see figure 3 (a)). Due to the temperature 
dependence of the wave vector k, one obtains a number 
of intermediate structures, the spirals with 2 < n < co 
(see figure 3 (b)), with the azimuthal angle between adja- 
cent layers $ = 2n/n. The ferroelectric SE phase is the 
second end point of this staircase. Actually, the S z  phase 
can be considered as the structure with an infinite 
number of layers in the unit cell (n = co), the correspond- 
ing azimuthal angle being $ = 27c/co = 0 (see figure 3 (c)). 

The present mechanism of the Devil's staircase is quite 
different from those proposed by Takezoe et al. [ 161, in 
which all the intermediate structures between Ss and 
S z ,  are planar. However, as shown above and in [28], 
symmetry and thermodynamics arguments cannot 
favour planar structures in multilayer chiral smectics. 

Let us also briefly discuss the probability of the 
existence of a Devil's staircase of any type in chiral 
smectic liquid crystals. For this aim we will consider the 
terms of the free energy responsible for the Devil's 
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273 V. L. Lorman 

0 0 

i- 
(1) 

Figure 3. Possible types of Devil’s staircase in multilayer 
chiral smectics. Temperature variation of the wave vector 
can be accompanied by progressive azimuthal reorienta- 
tion of the molecules in successive layers. (a) S,** phase as 
the first end point of the staircase; (b) and (c)  intermediate 
structures; (d) SE phase as the second end point of the 
staircase, the number of layers in the unit cell can be 
considered as infinite ( n  = c;c). 

staircase and their dependence on the chirality of the 
system. There are usually two different types of term in 
the inhomogeneous part F,nhom of the Landau-de Gennes 
free energy-the terms of the Lifshitz-type, linearly 
dependent on gradients of the OP, and terms like the 
square of the gradient of the OP. The phenomenological 
coefficient multiplying the Lifshitz term can be consid- 
ered as an ‘inhomogeneous field’; it depends on the 
chirality of the system and becomes zero in the racemic 
mixture. By contrast, there is no evident reason for the 
coefficient multiplying the square of the gradient to be 
dependent on the composition of enantiomers. On the 
other hand, as it is well known [34.38,39] the existence 
of the temperature dependence of the wave vector k of 
the Devil’s staircase type is connected with change in 
the sign of the latter coefficient. Thus, the Devil’s stair- 
case should not be strongly dependent on the concentra- 
tion of enantiomers. However, as far as the author is 
aware, experiments performed on antiferroelectric liquid 
crystals show in all cases a rapid vanishing of the regions 
of stability of the intermediate phases with concentration, 
moving away from the optically pure substance (see, for 
example, [4]). Taking also into account the absence of 
clear-cut information about the structures of inter- 
mediate phases between S z  and SzA, one can conclude 
that for the moment there are no experimental data 

clearly speaking in favour of any Devil’s staircase in 
chiral smectics. 

3. 
Another interesting and unusual feature of multilayer 

phases with complex tilt and dipolar order is the possibil- 
ity of existence of two isostructural ferrielectric phases. 
These phases have thc same basic unwound structure, 
but their helicoidal structures are quite different: they 
differ in the value of the helical pitch and the sense of 
the helix. 

To illustrate this possibility, let us generalize the two- 
layer model of the ferrielectric smectic phase previously 
developed by the authors [25,26]. The main features 
of this model are in a good agreement with the results 
of dielectric and optical experiments performed on 
MHPOBC-type samples [4-( l-methylheptyloxycarbon- 
y1)phenyl 4’-octyloxybiphenyl-4-carboxylate] and on 
series of liquid crystalline tolanes 

Two isostructural helicoidal ferrielectric phases 

especially the temperatures dependences of the dielectric 
constant, of the relaxation frequencies and of the optical 
response [25,26]. However one characteristic of this 
model was inconvenient. The corresponding Landau 
de Gennes free energy of the inhomogeneous liquid 
crystal was restricted to the fourth degree expunsion in 
the series of the OP components. Consequently, the 
phase transitions ferroelectric-ferrielectric and ferri- 
electric-antiferroelectric were described by the model a5 
second order, in agreement with the groupsub-group 
relationship which exists between the structures of these 
phases. On the other hand, DSC measurements clearly 
show that the mentioned phase transitions are of the 
j r s t  order. 

This situation is well known in the phenomenological 
theory of phase transitions. Usually, one can resolve this 
problem by including terms q/ the sixth degree in the 
free energy [31,37-39]. Using this method we easily 
obtain the sequence of j r s t  order phase transitions 
SF SF, SF, in the two-layer model. Furthermore, let us 
show that the sixth-degree expansion of the Landau- 
de Gennes free energy in this case leads to the possibility 
of the existence of two isostructurul helicoidu1,ferrieIectric 
phases. We introduce in the same way as in [25,26] 
a two-component axial vector of the tilt qi, defined 
by equation ( 2 ) ,  where i = 1 or 2. The four components 
of q, and q2 of the tilts in two adjacent layers can 
be decomposed into symmetric and anti-symmetric 
com binations: 

f l P  = ql + 42 and f l A  = ql 4 2  ( 7 )  
which span two irreducible representations of the space 
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group of the S, phase. Free energy expansion up to the 
sixth degree then contains the following terms: 

6 c  
+ Y(qPv.4)' + 3 qg + 5 7: + d13d(%'q.4)z 

+ d23d(qPtfA)2 f d l l Z ~ ~ d  + d l Z Z 6 ? i  dz. (s) I 
As the tilt angle in ferro-, ferri- and antiferroelectric 
phases remains nearly constant in all the layers 
[ 12,13,21], one can adopt for the following considera- 
tion the so called conical approximation, which permits 
the molecules in smectic layers to turn on cones, pos- 
sessingfixed vertex angles. The tilt of each layer can be 
written than as: qi = qo(cos q5i, sin 4i), where qo is constant 
and $i is the azimuthal angle of the tilt axial vector of 
the ith layer. Using the in-phase and anti-phase azi- 
muthal variables: 4 = (q5i + 4 ~ ~ + ~ ) / 2 ;  $ = (q5i - bi+J2 one 
can express the O P  in the form 

qp = 2y0(c0s 4 cos $, sin cos $); 
(9) 

qA = 2v0(- sin q5 sin $, cos q5 sin I)). 

Then, by substitution of the expression (9) into 
equation (S), the free energy can be rewritten as 

- (z)  ( A  + AA cos 2$) + a'cos 2$ 
2 

I bl + -COS' 2$ + c1 c0s3 2$ dz. 
4 6 

Note that the only difference in this free energy with 
respect to those proposed in [ 25,263 is the last term in 
(lo), which contains in conical approximation all the 
possible terms of the sixth degree. 

Using Euler-Lagrange variational procedure, one can 
see that the stable solution corresponding to a helicoidal 

structure is described by (p = kz; $ = C = f (z) ,  where k is 
the wave vector characterizing the pitch of the helix, 
and C is the temperature dependent constant with 
respect to the space variables [25,26]. For the ferroelec- 
tric helicoidal structure $ = 0, in the antiferroelectric 
helicoidal phase $ = 7c/2 and $ varies with temperature 
(n/2 > $(T)  > 0) in the intermediate ferrielectric phase. 

Let us now focus our attention on the ferrielectric 
phase. The equations of state, which define the temper- 
ature dependence of the characteristics of this phase (see 
Appendix in [25]) are 

k(g + Agcos 2$) - ( A  + AA cos 2$) = 0; 
(11) 

2kAA - k2Ag - a, - b, cos 2$ - c, cos2 2$ = 0. 

Changing variables to the reduced symmetrized 
variables: 

q = AA - Agk; 

A = -al A g  + blg + (AA)'; (12) 
B = AAg -~ AgA 

and excluding cos 2$ from (1 l ) ,  we obtain the effective 
equation describing the ferrielectric phase: 

q4 + $ [ - A  + c1 $1 + qB[h,  + 2c1 $1 + 2 BZ = 0. 

Here q is a reduced symmetrized wave vector of the 
helix, A and 6, are temperature dependent phenomeno- 
logical coefficients and B is the characteristic of effec- 
tive chirality of the two-layer unit cell. This equation 
describes two different stable minima of the free energy 
of the two-layer ferrielectric state, which correspond to 
two different isostructural helicoidal ferrielectric phases. 
The schematic dependence of the free energy on the 
value of the wave vector q and on the value of cos 2$ is 
presented in figure 4(a). One can compare this depend- 
ence with those resulting from the fourth-degree expan- 
sion of the free energy (see equation (AS) in [ 2 5 ] )  as 
shown in figure 4(b). 

Isostructural phase transition between two ferrielectric 
phases corresponds in the present model to vanishing 
of the coefficient multiplying the term linear in q in 
equation (13): 

B 61+2cl- = O .  1 
At the transition line, the reduced wave vector q 
undergoes a jump to its opposite value: &)= -&I. 
Thus, if the difference between the two Lifshitz coeffi- 
cients AA = Al - i2 is rather small (which is natural in 
a system with no difference between adjacent layers in 
the parent SA phase), then the wave vector of the helix 
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3) b) 

Figure 4. Schematic dependence of the free energy of the two- 
layer model of the ferrielectric phase on the value of the 
reduced wave vector q and on the value of cos2$, where 
$ is an azimuthal angle between two adjacent layers. 
(a) Sixth-degree expansion; (b) fourth-degree expansion. 

k changes its sign at the Ferri(')-Ferd2) transition (see 
the first equation in ( 12)). Consequently, two isostructu- 
ral helicoidal ferrielectric phases should have different 
senses of their helices. If All  has a finite value, different 
from zero, the wave vector k has different absolute values 
in the two ferrielectric phases: I kf;:'I # I kv) I .  

Summarizing the difference between and the common 
features of the Ferd') and Fern") phases predicted by 
the model (lo), we can note that, (i) there is no qualitutiue 
diference between these two structures possessing the 
same unwound basic structure. They are two-layer tilted 
structures with the same tilt angle in the layers and with 
the azimuthal angle between the layers different from 
zero and from n: and (ii) there exist quantitative differ- 
ences expressed by (a)  the diference of the pitch lengths 
pf;" fpg), (b) the diferent senses of the helices pg,) > 0 
pf . : '<O,  (c)  the diferent average values of the azimuthal 
angle $I&#$&), and (d) the diferent values of the free 
energy. 

The difference in helical characteristics should be 
clearly seen in optical experiments. The difference in the 
free energies should lead to a DSC peak at the 
Ferri(')-Ferd2) transition and to non-miscibility of these 
phases. 

It is necessary also to note that line of isostructural 
phase transitions can terminate in a critical point of the 
liquid-gus type. In a planar phase diagram of the model 
one can find, then, two types of thermodynamic path, 
which correspond to different regimes of evolution of 
the system (see figure 5 (a)). First one intersects the 
transition line and the system undergoes a first order 
isostructural phase transition. The second path does not 
intersect the line and the system goes from one ferri- 

t C P  f 
u n  8 10 

a) b) 

Figure 5. Schematic phase diagram presenting the line of 
isostructural phase transition which terminates in a critical 
point of the liquid-gas type. Two different thermodynamic 
paths are shown: path 1 intersects the line of transition 
between two ferrielectric phases; along path 2 the system 
does not undergo the transition. (a) phase diagram of the 
model ( 10); (b)  eventual (temperatureechain length) phase 
diagram of the tolane family of liquid crystals. 

electric phasc into another without any transition at all. 
This is possible because there is no qualitative difference 
between the phases. Schematic temperature dependences 
of the wave vector k and of the pitch of the helix 
corresponding to the two different thermodynamic paths 
are shown in figure 6. For the path intersecting the 
transition line, the pitch of the helix should undergo a 
finite jump with the change of the helix sense in the 
region of the ferroelectric SF, phase (see figure 6 (a)), 
while along the second path, without any transition, the 

a) h) 

Figure 6. Schematic temperature dependences of the wave 
vector k and of the pitch p of the helix along two different 
thermodynamic paths in the phase diagram of figure5 
(a)  path 1 with Ferd1)-Ferd2) transition; (h)  path 2 
without phase transition. 
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wave vector k of the helix should change its sign 
continuously, which correspond to divergency of the 
pitch in a very narrow temperature region. The helix is 
unwound and then wound again in the opposite sense. 

On experiment, the phase diagram 5(a) can corre- 
spond to the diagram (temperature-chain length) for 
the series of homologues of a liquid crystal family (see 
figure 5 (b)). Actually, b, is temperature dependent and 
B depends only on the molecular characteristics of the 
substance. One can compare the predictions of the 
present model with recent results from DSC, miscibility 
and optical measurements performed on the family of 
tolane liquid crystal materials [21,40,41]. These mat- 
erials show the existence of two non-miscible S c  phases 
for n = 7 and 8, although there is only one SF, phase in 
the sequence of phases for n = 9, 10, 11 and 12. The first 
order of the Fer#-Ferrii2) transition in the C7-tolane 
and the C8-tolane is confirmed by the well-resolved 
peak in the DSC measurements. The helical pitch meas- 
urements made by the Grandjean-Can0 method and by 
selective band reflection show the inversion of the sense 
of the helix in the region of S$, phase. For n = 10 this 
change occurs approximately in the middle of SZ7 phase 
and is accompanied by a rapid variation of the  p i tch  
value, which can correspond to pitch divergence. In the 
case of n = 8, the p i t ch  undergoes a j in i t e  discontinuity 
with change in sign exactly at the Ferrii1)-Ferrii2) trans- 
ition. These facts permit to suppose that the two SE, 
phases in the C7- and C8-tolanes are isostructural 
helicoidal ferrielectric phases. A possible (temperature- 
chain length) phase diagram of this family is schematized 
in figure 5(b). For n = 9, 10, 11 and 12, the thermodyn- 
amic path does not intersect the line of the isostructural 
phase transitions. 

4. Discussion 
This work illustrates only a part of new unusual 

features of multilayer smectic phases with complex tilt 
and dipolar order. Some other important characteristics 
of these phases could not be discussed here. These 
concern especially the macroscopic switching of defects 
due to thermal fluctuations in the ferrielectric phase and 
several complex inhomogeneous structures which can 
arise in these systems in an external electric field. 
Nevertheless, the points presented here: the multitude of 
multilayer antiferroelectric and ferrielectric phases and 
the possibility of isostructural helicoidal ferrielectric 
phases show in themselves the richness of this type of 
liquid crystal and the remarkable difference with respect 
to the classical ferroelectric S y  phase. 

The author is grateful to Professor J. Prost and Drs 
J. Pave1 and B. Mettout for stimulating discussions. The 
work was supported in part by the Region of Picardie. 
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